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Abstract— Laser scalpels are precise, dexterous, and efficient
tools for soft tissue surgeries. However, surgical lasers are hard
to control manually, require experience, and are often incom-
patible with conventional intraoperative imaging sensors. Inte-
grating compatible sensing technology with laser scalpels for
precise soft tissue surgery opens vital avenues for widespread
adoption and previously unrealized automation. This paper
proposes a dual-sensor strategy to generate high-resolution
surgical scene visualization based on surgeon feedback for
robotic laser surgery. The proposed method uses a coarse depth
sensor to localize the tissue of interest in the surgical scene, and
a fine optical coherence tomography (OCT) sensor to create a
detailed (< 30um lateral resolution) tissue representation. The
method achieves RMSE error in the range of 0.0878mm to
0.102mm in large-area tissue reconstruction and 0.050mm to
0.427mm in pattern-based laser ablation using user feedback
over various fiducial samples. The findings demonstrate the
proposed system’s capability in large-area tissue imaging for
precise laser-based surgery.

I. INTRODUCTION

The need for precise, safe, and accurate minimally invasive
surgery has naturally led to the development of precision
scalpels and detailed surgical scene visualization tools. With
over 40 million major surgeries taking place annually in
the United States [1], and the ratio of patient per clinician
increasing [2], there is a growing need to improve post-
operative patient outcomes by decreasing recovery time and
utilizing novel technologies to automate repetitive lower-
level surgical tasks to lessen clinical burden.

The increasing adoption of robot-assisted minimally in-
vasive surgery (RAMIS) has resulted in significant safety
improvements, better patient care, and reduced recovery
time through highly dexterous surgical scalpels with com-
plementary imaging modalities. Energy-based scalpels, such
as lasers, are well-suited for RAMIS owing to their versa-
tility (fiber-based or free-form), precision (sub-millimeter),
and tunability (resection vs. coagulation) [3, 4]. Currently,
RAMIS is performed using conventional mechanical tools
repackaged in novel form factors with complementary imag-
ing sensors and teleoperation capability [5].

Despite rapid advancements in robotic surgery, existing
laser surgery techniques remain limited in their broader
deployment and application in RAMIS systems. Laser-based
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devices are often incompatible with conventional sensing
modes and prone to hand tremors and inconsistencies during
manual operation. Additionally, though laser scalpels can
provide sub-millimeter resection cavities, they do not provide
tactile feedback, and the quality of resection is difficult to
accurately predict owing to the complex bio-physical laser-
tissue interaction phenomenon that dictates the result. The
efficacy of the laser scalpel can be determined by the fluence
delivered onto the tissue surface. As laser fluence is depen-
dent on laser beam distance and orientation, a high-resolution
representation of the tissue surface is necessary to calculate
the optimal laser pose and position [6-8]. We hypothesize
that using high-resolution sensing technologies compatible
with laser-tissue interaction, such as optical coherence to-
mography (OCT), will improve accuracy and precision when
using intelligent laser-based robotic platforms.

In this work, a novel dual-sensor strategy is proposed for
accurate 3-D surgical scene visualization for robotic laser
surgery. Owing to imaging sensors’ varied spatial resolutions
and fields of view, our proposed method utilizes a coarse
depth camera to visualize the surgical scene, followed by a
fine 3-D visualization of the tissue of interest using an OCT
system. This enables faithful representation of tissues with an
uneven surface contour larger than OCT field-of-view (FOV)
and at sub-micron (< 30um) resolution, a key component
of near-real-time feedback for closed-loop control in laser-
based robotic tissue surgery. We demonstrate our proposed
method in Figure 1, through:

Surgeon-based tissue visualization: The initial surgical
scene is captured by the depth camera, allowing the surgeon
to choose a region of interest (ROI) for finer visualization.

Large-area robotically assisted OCT scan for het-
erogeneous tissue surface: A robotically-mounted OCT
device scans the selected tissue region while maintaining a
consistent distance from the tissue surface, keeping the tissue
within the focal distance across the scanning region.

Evaluation of OCT representation through laser ab-
lation of user-defined patterns: Reproducibility of surgical
resection patterns defined in the OCT visualization is tested
using a fiber-coupled laser scalpel to evaluate the accuracy
of distance estimates between large-area OCT volumes. The
proposed method can be easily adapted to perform surgeon-
in-loop tissue resection with feedback.

A. Large-area OCT

The invention and subsequent adoption of OCT has sig-
nificantly impacted the field of ophthalmology and broader



medical science [10-12]. OCT is a high-resolution laser-
based imaging sensor working on the principle of interfer-
ometry. It constructs cross-sectional images (B-scan) based
on reflected light from the tissue medium or echo time
delay of backscattered light. However, OCT systems have
a limited range (<14 x 14 mm?) and suffer from image
quality degradation outside of working distance. As most
tissue surfaces are larger than the OCT FOV and have
uneven contours, standalone OCT systems do not suffice
for surgical needs. However, a combination of OCT with a
dexterous robotic system is a possible solution to overcome
the limitations of traditional OCT.

Several works in recent literature have been proposed to
perform large-area robotic OCT scanning, with the central
component being an OCT system mounted on a robotic arm
[13-18]. The goal is to augment the OCT capabilities by
accounting for tissue contour change by adjusting attitude
and stitching multiple individual 3-D tissue representations
(C-scan) in real-time or post-processing. However, these
works do not involve surgical planning or tissue resection.
In one work [13], authors used a depth camera on an optic
table to guide a robot arm-mounted OCT system, with an
additional RGB camera for fine alignment to the target. The
tissue surface was divided into several voxels within a single
OCT scan, and the final volume was manually registered and
fused using recorded robot probe pose information. Another
common method involves recording of continuous B-scans
during robot motion with either a structured light camera
for initial scene visualization and pose estimation [15], or
OCT image feedback for real-time pose adjustment [18].
The resulting volumes are then registered using robot pose
information and cross-correlation of imaging features [14],
manually finding common points, or commercial software
packages. Despite the ability to obtain continuous OCT scan

Robot Arm

Fig. 1: System overview. (a) Overall system setup, (b) dual-sensor imaging system and laser scalpel, (c) interface for
visualization and surgeon feedback [9], (d) surgeon-feedback based laser ablation pattern on porcine muscle, (e) laser
ablation pattern on porcine muscle.

data, the OCT systems used can be cost-prohibitive to buy or
build in-house. In this work, we utilize a low-cost, off-the-
shelf OCT system to drive our robotic laser surgery platform.

B. OCT and Laser-based Surgery

While different sensing modalities have been proposed
to guide lasers for tissue resection [3, 4], OCT provides
high spatial resolution, real-time imaging, intraoperative ap-
plication, and subsurface visualization. Previous works have
combined a 1940 nm Thulium Fiber (Tm) and a 2940
nm Erbium-doped yttrium-aluminum-garnet laser (Er: YAG)
with a 1310 nm OCT system to scan and resect tissue
[19, 20]. While their integration of various wavelength lasers
in common optic paths is commendable, the components
are fixed on an optic table and do not afford the dexterity
needed to perform complex surgical maneuvers. Fan et al.
[21], combined an OCT system with an off-axis laser fiber
mounted on a 3-DoF linear stage for tissue resection. Li
et al. [22] proposed a dexterous robotic system with OCT
and fiber laser scalpel mounted on the end-effector of the
robot arm. The system uses a preoperative MRI scan of
the tissue surface with fiducial markers to perform an eye-
to-hand depth camera calibration to align the preoperative
scan with the current tissue position. Their work achieved
scanning of tissue volume with height adjustment based on
preoperative MRI data and performed tissue resection with
a learning-based segmentation algorithm.

To develop a functional robotic laser surgery platform,
real-time (or near real-time), intraoperative sensors are
needed to visualize the surgical scene. This would admit
accurate and precise tissue surface representations, enabling
intraoperative adjustments using real-time control. Our pro-
posed dual-sensor strategy is low-cost, near real-time, pro-
vides intraoperative sensing, and packages all the imaging



sensors and laser scalpel onto a robot arm, a critical step
towards a multi-purpose robotic laser surgery platform.

II. METHODS
A. System Overview

Our proposed hardware system consists of a robotic arm,
a depth camera, a portable OCT system, and a fiber-coupled
laser source for resection, as shown in Figure 1(a). We use
a 6 DoF URS5e (Univeral Robots, Denmark) robot arm with
an 850mm reach and payload capacity of 5 kg. An Intel
Realsense 435i (Intel Corporation, United States) camera is
used to capture depth information about the surgical scene.
A low-cost commercial spectral domain OCT system with
a center wavelength of 1310 nm and a bandwidth of 60
nm (OQ Stratascope 1.0, Lumedica Inc, United States) is
used to generate a high-resolution visualization of the ROI.
A Thulium (Tm) fiber laser scalpel, 1940 nm (IPG Photonics,
United States), is used with a fiber diameter 400pm close to
the tissue surface without any additional optics. All sensors
are mounted and calibrated in the eye-in-hand configuration.

The robot arm initially obtains an RGB-D scan of the
surgical scene from a predefined home position. Within the
resulting point cloud, the user is prompted to select a ROI
for higher-resolution visualization by selecting a center point
and a scan radius. Scanning waypoints are generated by
dividing the selected region into a grid. Using the RGB-
D point cloud, the waypoints are height adjusted to keep
the tissue surface within working distance of the OCT by
calculating the average tissue surface elevation of a small
voxel region around each waypoint. The voxel size is defined
based on OCT FOV [22]. The robot sequentially reaches each
waypoint and scans the ROI with the OCT scanner. Once the
OCT volume is stitched, the user can define regions in the
stitched volume for further laser resection.

B. Intraoperative Image Guidance

We aim to use real-time image guidance for our robotic
surgery systems during surgery. We obtain both depth and
color images of the surgical scene from the Realsense 435i
camera. The depth information is incorporated with the 2-D
color image of the scene and intrinsic calibration parameters
to generate a 3-D color pointcloud, allowing the surgeon to
easily choose a ROI. Points farther than 2 m are clipped,
removing extraneous scan regions irrelevant to the scene.
Compared to structured vision cameras and preoperative
imaging (MRI), the RGB-D camera provides lower-depth
resolution but is a fraction of the cost, size, and time.

C. OCT Data Acquisition

The OCT system comes with a software application
(Lumedica OQ LabScope, Lumedica Inc, United States) to
acquire A-scans and generate cross-sectional B-scans. During
operation, we pass serial commands to the OCT to perform
C-Scans and save the B-scans as individual 2-D images. Each
C-scan has a voxel resolution of 512 x 512 x 128. Using the
C-scans, the tissue surface boundary can be extracted. As
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Fig. 2: Experiment Flow. (a) Coordinate frame of robot
base, W, robot end-effector E, depth camera coordinate
system C, OCT 3-D image coordinate system O, and fiber
laser scalpel L (b) flow chart of the experiment process

OCT images are generated based on interferometry, the air-
tissue boundary has a higher intensity than the neighboring
pixels, allowing for inference of the boundary location.
A bilateral filter is applied to smooth out the noise and
preserve edges, followed by the extraction of the brightest
pixel value from each image column. Furthermore, we define
the relationship of pixels from an OCT volume to physical
distances. Based on the measurement of fiducial objects of
known lengths, we obtain an axial resolution of 14.59um, a
lateral resolution of 28.00um, and a distance of 111.7um
between two adjacent B-scans. The scaled tissue volume
is then represented by a point cloud in the OCT frame of
reference. Each OCT volume is 14.336 x 14.298 mm? in X
& Y and takes about 13 seconds to complete.

D. System Calibration

As shown in Figure 1(b), the system comprises two sens-
ing elements and one actuating element: an Intel Realsense
RGB-D camera, a Lumedica OCT system, and a Tm fiber
laser scalpel. To obtain accurate point cloud positioning and
laser targeting, each of these must be calibrated to the world
frame by calculating the homogeneous transformation matri-
ces TE, T5, and TF (Figure 2 (a)). Once the transformation
to the end effector (£) is known, transformation to the world
frame (W) is found using the robot forward kinematics to
obtain 7. The camera calibration matrix 7% was obtained
using an iterative eye-in-hand calibration method similar
to the one used in [23]. The two transformation matrices
T and T} were both obtained using the hardware design
specifications based on 3D models of the OCT system
and laser fiber [22]. Additionally, specifications provided by
Lumedica (e.g., focal distance) were used to position the
focal frame of the OCT system, allowing for an accurate
transformation to the robot world frame.

E. Large-area OCT Volume Stitching

To perform surgery, the OCT scanner must scan a large
area of the tissue surface. Based on height-adjusted scan
points generated using a depth camera, the robot moves the
OCT scanner to each point to perform a volumetric scan.
The distance between two scan points is kept at 7.5mm.
However, this value can be optimized if time is a constraint.



The robot pose corresponding to the scan point location
is saved for post-processing. The stitched large-area OCT
volume is generated by transforming each OCT volume
to the robot base frame using Tg/ . We account for non-
telecentric distortions in the XY plane by truncating 1.5mm
from each side of the OCT voxel in the X direction. As OCT
B-scans have the least distortion in the center of the image,
and the distortion increases towards the edges, truncating the
edges helps to reduce lateral wrapping.

III. EXPERIMENTS & RESULTS

In this section, we perform experiments to validate the
efficacy of using a dual-sensor imaging strategy for generat-
ing an accurate representation of tissue for precision surgery.
First, we perform a qualitative experiment to generate large-
area OCT stitched volume with minimal distortion. Second,
we use known ground truth lengths to quantify errors in
stitched OCT representations. Third, we demonstrate that our
method can perform tissue resection tasks based on user-
defined patterns in high-resolution OCT volumes.

A. Automatic Scanning of Large-area Object

We test our coarse (depth camera) to fine scanning (OCT)
pipeline by placing the target object on a 3-axis stage.
The depth camera takes the initial image of the scene and
allows the user to select a point on the object of interest. A
square of side length 50mm is defined around the chosen
point, and height-adjusted scan points are generated. We
scan a 2-D checkerboard to observe any distortion in the
XY direction. Similarly, 3-D checkerboards of varied depths
(Imm, 2mm) are also scanned validate depth reconstruction
in Figure 3. When needed, we remove floating outliers for
ease of visualization.

Finally, we also scan a sample of porcine muscle tissue to
mimic a surgical scene (Figure 1). A 30 mm square scanning
region was chosen based on the size of commonly occurring
muscle tumor masses (soft tissue sarcoma).

B. Accuracy of Stitched OCT Representation

A quantitative evaluation of fiducial length representation
in stitched OCT volume allows us to estimate the total
system error. Obtaining correctly stitched high-resolution
volumes involves several steps where errors can occur, thus
distorting the final representation. Common possible error
sources include: OCT pixel-to-physical coordinate scaling,
lateral wrapping, robot forward kinematic estimation, and
sensor extrinsic calibration. We use known length values
from one 2-D and two 3-D checkerboards to measure errors
in representing known distance measurements over multiple
stitched OCT voxels. Each checkerboard was 3-D printed
using a 5 x 5 mm? grid, with depths of 2mm and 1mm for the
3-D boards. As seen in Figure 4, distances are calculated over
a stitched OCT region by using Segment Anything Model
[24] to segment out square regions. By finding the centroid
of each segmented region, a center-to-center distance can be
found, which is also known from both caliper measurement
and the 3-D model to be 5.0mm for the 3-D boards and

4.7mm for the 2-D board. Overall, we obtain an average
error of 0.0878mm, 0.0844mm, and 0.102mm for the 3-D
2mm, 3-D 1mm, and 2-D checkerboard targets respectively,
which are below the 0.5mm accuracy target commonly used
in surgical applications.

C. Evaluation of OCT Representation Through Laser Abla-
tion of User-defined Patterns

With the high-resolution representation of the object com-
pleted and system error quantified, we demonstrate our
proposed method for downstream surgical tasks using a fiber-
coupled Tm laser mounted to the robot end-effector.

To define a cutting region, we scan and stitch an OCT vol-
ume consisting of a dotted pattern with known spacing. We
employ user feedback to select points on the stitched OCT
volume and generate a trajectory connecting each point in the
sequence. If the OCT volume representation is accurate, the
distance between objects in the OCT representation should
match the ground truth length between them. Various lengths
were scanned to test representation accuracy across a varied
number of voxel stitches, shown in Table II. We observe
straight ablation paths for lengths longer than 6.85mm as
seen in Figure 5(b), with one side of the square being of
smaller size than programmed Figure 5(a). We select a raster
pattern for ablating tissue, though other ablation patterns
are possible. We demonstrate ablating a raster scan pattern
on scanned porcine tissue based on user choice, as seen in
Figure 5(d) in OCT representation and Figure 5(e) in 2-D
color camera. We observe a positional error of 1.875mm for
1x1 case, 1.825mm for 1x3 case, and 2.15 mm for 3x5 case
on average when measured from the center of the target circle
to the nearest corner (Figure 5 (a) and (b)).

IV. DISCUSSION

Our proposed work addresses the sensing challenges inti-
mately associated with barriers to minimally invasive preci-
sion surgeries. We do so by proposing a dual-sensor strategy
of obtaining a coarse representation of a noisy surgical scene
and a fine representation of the surgical ROI. Our work
employs real-time, depth camera, and near real-time OCT
sensors to inform the surgeon and adapt to changes during
surgery. Our choice of sensors complements the FOV and
resolution limitations of each other and fit on the robot
arm, to provide a low-cost, robotic platform with ease of

TABLE I: 3D Checkerboard Distance Metric

[ [[ 3D-2mm Board | 3D-Imm Board [ 2D Board |

Ground Truth (mm) 5.0 5.0 4.7

Mean (mm) 4.959 4.963 4.705
Std. Dev. (mm) 0.0773 0.0758 0.102
RMSE (mm) 0.0878 0.0844 0.102

TABLE II: Tm Laser Cutting Distance using OCT Point
Selection

[ Actual Distance (mm) [ Avg. Cut Distance (mm) | RMSE (mm) [ n |
6.85 6.9 0.180 4
20.55 20.7 0.427 2
34.25 34.3 0.050 1
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Fig. 3: OCT Large-area reconstruction. Examples of reconstructed physical objects using forward-kinematic-stitched OCT
volumes.
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incorporating surgeon feedback. We anticipate our system to  of tissue surface information is needed.
be especially useful for surgical scalpels requiring microscale . . .
P Y £ p 4 g Compared to previous work in large-area OCT scanning,
precision, such as laser scalpels, where accurate knowledge . e .
our OCT scanner is less cost-prohibitive. It allows quick
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Fig. 5: Laser ablation based on user-defined patterns. (a)
1x1 square (b) 1x3 and 3x5 over multiple OCT voxels,(c)
pre-ablation, (d) post-ablation OCT volume of porcine mus-
cle, (e) color camera view.

prototyping with an easy interface, albeit at the cost of
limited flexibility in accessing raw OCT data [15-18]. Using
a “’stop-and-stare” scanning strategy maintains high lateral
resolution with a tradeoff in imaging time. Unlike other
large-area OCT visualization literature [13, 14, 18] where
individual OCT voxels are stitched together through manual
or commercial software-based registration, our method uses
robot pose information and careful OCT volume reconstruc-
tion to preserve the spatial relationship between points in
stitched OCT volume and perform downstream tasks of
resection. We observe that coarse depth sensor visualization
has substantial information about tissue surface contour to
determine the initial position and pose of the OCT scanner
and does not warrant a pre-scan by the OCT.

There are multiple avenues of error propagation when
building multimodal multisensor robotic systems for auto-
mated laser tissue surgery. We quantify system error to
calculate net error that may have propagated during the
experimental process. Our target was to keep the net error
below 500um for delicate surgical tasks involving laser
energy as might be seen during pathological tissue resection
at a normal-tumor tissue boundary. We were able to represent
large-area objects with a maximum error of 102um and for
experiments involving laser scalpel to ablate patterns defined
by users, we had a maximum positional offset of 2.15 mm
with ablated region lengths within 427um or less of user-
defined length. Our proposed work is the first step in moving
towards a low-cost robust robotic laser system for automated
and semi-automated surgical tasks.

As seen in Figure 3, a slight misalignment between
stitched voxels can be observed in the 2-D checkerboard
around the first row (1,2,3 fiducial marker) and number 4
is smaller than the rest. There are several areas where our
approach can be improved. The current system is limited in
speed and ease of data acquisition and transmission com-
pared to other OCT systems and structured light cameras.
Though a structured light camera will struggle to scan a
point resection, its efficacy needs to be compared in the case
of surface resection, as that is of higher practical value for

volumetric tissue resection. In the current system, the OCT
B-scan artifacts can be corrected by implementing a non-
telecentric scanning distortion correction [25]. OCT scanner
can be calibrated using the Tsai-Lenz method [26] to lower
scanner positioning error. Though surgical scene segmenta-
tion is beyond this study’s scope, methods such as 3DSAM-
adapter [27] and UNET-based automatic segmentation [28]
can provide additional semantic information to the surgeon.
Our current OCT FOV spans a 14.336 x 14.298 mm? region
which may still have gradual but substantial variation in
tissue surface contour. One possible solution could be to use
the mean and standard deviation of tissue elevation in a voxel
to determine the need for sub-dividing the voxel into smaller
sub-voxels or modifying the OCT pose to account for large
deviations in surface contour.

In our experiment for ablating patterns based on user
feedback, we noticed a consistent positional offset from the
center of the target. This could be due to a combination of
TE, and TF transform errors. Future design can integrate
surgical laser beam and OCT beam through the use of a
dichroic mirror and calibrating the laser beam offset with
the OCT. Having both the laser beams in a common optic
path will also simplify the calibration process though care
must be taken to consider the damage threshold of the optics
used. To add a close-loop control, it is important to track
the laser spot on the tissue. The modified method can be
tested on tissue phantoms compatible with laser scalpels and
OCT [29]. We can adapt the “Track Anything Model” from
[30] for real-time laser tracking and [8] for path planning.
This will allow us to maximize the utility of large-area
OCT volume and perform volumetric tissue resection while
maintaining consistent positioning of the laser beam.

V. CONCLUSION

We introduce a dual-sensor coarse-to-fine imaging strategy
for robotic laser surgery. Our system incorporates real-time
surgical scene visualization in varied resolution levels, al-
lowing surgeons to provide feedback for tissue visualization
and controlling laser ablation parameters through low-cost
yet effective hardware integration and algorithm design.
Various system components, depth camera, OCT, and laser-
fiber are calibrated to overcome limited FOV and resolu-
tion challenges of each sensor. Detailed assessment was
performed to quantify system error in high-resolution OCT
representation and its impact on laser ablation. Notably, our
proposed method demonstrates the first step in developing
an autonomous robotic laser system. We anticipate that our
system will find use in tumor resections such as meningioma,
soft tissue sarcoma, and osteosarcoma. Future research will
focus on reducing the OCT distortion, laser-fiber calibration
error, and adding a closed-loop controller for volumetric
tissue resection utilizing feedback from the OCT.
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